26 | 0 | 22 |
下载次数 | 被引频次 | 阅读次数 |
高速列车气动阻力(FA)随速度提升显著增加,但传统流线型设计面临空间利用率与减阻效率的矛盾。以CR400BF型高速列车(high-speed train, HST)为研究对象,将车顶部分区域的原流线型光滑结构改为凸包型非光滑结构,采用响应面法(response surface method, RSM)对其气动减阻性能进行优化。通过不同结构参数对FA的影响分析,确定影响FA的关键参数。运用RSM构建HST凸包型车顶结构FA与关键参数之间的数学模型。通过设计试验方案、采集数据及进行回归分析,得到准确可靠的响应面模型。在此基础上,采用优化算法对HST凸包型车顶结构的气动减阻性能进行优化。结果表明:基于RSM构建的凸包结构多参数协同优化模型,优化效率较传统方法提升95%;最优参数组合(凸包半径109.6 mm、凸包高度580.1 mm、凸包阵列距离347.8 mm)使气动阻力降低25.1%,仿真与试验误差<3%;凸包结构通过延缓边界层分离、重构尾涡结构实现减阻,尾涡长度减少18.1%。
Abstract:Aerodynamic drag(FA) of high-speed trains increases significantly with the elevated speed, but a contradiction between space utilization and drag reduction efficiency exists in traditional streamlined design. Taking the CR400BF high-speed train(HST) as the research subject, the original streamlined smooth structure on the roof section was replaced with convex hull type non-smooth structure. The aerodynamic drag reduction performance was optimized using the response surface method(RSM). Through analysis of the impact of different structural parameters on FA, the key parameters influencing FA were determined. RSM was employed to construct a mathematical model between FA and the key parameters for the convex hull type roof structure of the HST. An accurate and reliable response surface model was obtained via designing experimental schemes, collecting data, and performing regression analysis. On this basis, an optimization algorithm was applied to enhance the aerodynamic drag reduction performance of the convex hull type roof structure. The results demonstrate that a multi-parameter collaborative optimization model for the convex hull structure was established based on RSM, improving optimization efficiency by 95% compared to traditional methods. The optimal parameter combination(convex radius: 109. 6 mm, convex height: 580. 1 mm, convex array spacing: 347. 8 mm) reduces aerodynamic drag by 25. 1%, with a simulation-experimental error <3%. The convex hull structure achieves drag reduction by delaying boundary layer separation and reconstructing the wake vortex structure, resulting in an 18. 1% reduction in trailing vortex length.
[1]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006, 6(1):1-9.TIAN H Q. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1):1-9.(in Chinese)
[2]秦淼.高速列车空气动力学性能的研究[D].北京:北京交通大学,2011:1-7.QIN M. Study on the aerodynamic characteristics of high-speed trains[D]. Beijing:Beijing Jiaotong University, 2011:1-7.(in Chinese)
[3] TIAN H Q. Formation mechanism of aerodynamic drag of high-speed train and some reduction measures[J]. Journal of Central South University of Technology, 2009, 16(1):166-171.
[4]康熊,曾宇清,张波.高速列车空气阻力测量分析方法[J].中国铁道科学,2012, 33(5):54-59.KANG X, ZENG Y Q, ZHANG B. Measurement method for the air resistance of high speed train[J].China Railway Science, 2012, 33(5):54-59.(in Chinese)
[5]李田,戴志远,刘加利,等.中国高速列车气动减阻优化综述[J].交通运输工程学报,2021, 21(1):59-80.LI T, DAI Z Y, LIU J L, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1):59-80.(in Chinese)
[6]刘凤华.高速列车减阻技术试验研究[J].现代城市轨道交通,2019(5):35-38.LIU F H. Study on high-speed train resistance reduction technology tests[J]. Modern Urban Transit, 2019(5):35-38.(in Chinese)
[7]余以正,刘堂红,夏玉涛,等.更高速(400+km/h)列车气动减阻技术发展与展望[J].空气动力学学报,2021, 39(5):83-94, 82.YU Y Z, LIU T H, XIA Y T, et al. Development and prospect of aerodynamic drag-reduction technologies for trains at higher speed(400+km/h)[J]. Acta Aerodynamica Sinica, 2021, 39(5):83-94, 82.(in Chinese)
[8]郭裕钧,杨晨光,张血琴,等.动车车顶绝缘子气动减阻优化及绝缘性能研究[J].高电压技术,2023,49(5):1917-1926.GUO Y J, YANG C G, ZHANG X Q, et al. Study on optimization of aerodynamic drag reduction and insulation performance of roof insulators for high-speed trains[J]. High Voltage Engineering, 2023, 49(5):1917-1926.(in Chinese)
[9]孙朋朋.高速列车非光滑车身气动减阻特性研究[D].杭州:浙江大学,2012:8-59.SUN P P. Research on aerodynamic drag reduction of high-speed train with non-smooth surface[D]. Hangzhou:Zhejiang University, 2012:8-59.(in Chinese)
[10]朱海燕,胡华涛,尹必超.凸包非光滑表面高速列车气动阻力及噪声研究[J].华东交通大学学报,2020,37(4):88-95.ZHU H Y, HU H T, YIN B C. Research on aerodynamic resistance and noise of high-speed train with convex non-smooth surface[J]. Journal of East China Jiaotong University, 2020, 37(4):88-95.(in Chinese)
[11]朱海燕,张翼,赵怀瑞,等.基于边界层控制的高速列车减阻技术[J].交通运输工程学报,2017, 17(2):64-72.ZHU H Y, ZHANG Y, ZHAO H R, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2):64-72.(in Chinese)
[12]陈明亮.基于表面微结构的高速磁浮列车气动减阻研究[D].江门:五邑大学,2022:9-75.CHEN M L. Research on aerodynamic drag reduction of high-speed maglev trains based on surface microstructures[D]. Jiangmen:Wuyi University, 2022:9-75.(in Chinese)
[13]任俊伟,平学成,王从曼,等.基于响应面法的蛇形导线几何参数优化[J].中国科技论文,2022,17(10):1135-1143.REN J W, PING X C, WANG C M, et al. Optimization of geometric parameters of serpentine wire based on response surface method[J]. China Sciencepaper,2022, 17(10):1135-1143.(in Chinese)
[14]周文凯,高士博,王尕平,等.冻结道砟单轴压缩试验的离散元细观参数优化[J].中国科技论文,2024,19(6):687-694.ZHOU W K, GAO S B, WANG G P, et al. Meso parameter optimization of discrete element model of frozen ballast uniaxial compression tests[J]. China Sciencepaper, 2024, 19(6):687-694.(in Chinese)
[15]聂琦.井下旋流分离器分离性能影响因素分析及结构改进[D].荆州:长江大学,2023:44-67.NIE Q. Analysis of influencing factors on separation performance of downhole cyclone separator and structural improvement[D]. Jingzhou:Yangtze University, 2023:44-67.(in Chinese)
[16]张添俊,赵桂峰,马玉宏,等.基于响应面法的高铁隔震桥梁地震风险分析[J].广州大学学报(自然科学版),2023, 22(3):44-52.ZHANG T J, ZHAO G F, MA Y H, et al. Seismic risk analysis of high-speed railway isolated bridges based on response surface method[J]. Journal of Guangzhou University(Natural Science Edition),2023, 22(3):44-52.(in Chinese)
[17]陈超鹏,全伟,吴明亮,等.基于离散元法的油菜移栽垂直入土式成孔部件参数优化[J].湖南农业大学学报(自然科学版),2019, 45(4):433-439.CHEN C P, QUAN W, WU M L, et al. Parameter optimization of vertical soil-filling hole-forming parts for rapeseed transplantation based on discrete element method[J]. Journal of Hunan Agricultural University(Natural Sciences), 2019, 45(4):433-439.(in Chinese)
[18] LI R, XU P, YAO S G. Optimization of the highspeed train head using the radial basis function morphing method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(1):96-107.
[19] ZHANG J, HE K, XIONG X, et al. Numerical simulation with a DES approach for a high-speed train subjected to the crosswind[J]. Journal of Applied Fluid Mechanics, 2017, 10(5):1329-1342.
[20] XIA C, WANG H F, SHAN X Z, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168:177-189.
基本信息:
DOI:
中图分类号:U270.11
引用信息:
[1]陈婧,杜礼明,王修召.基于响应面法的高速列车凸包型车顶结构气动减阻优化[J].中国科技论文,2025,20(07):589-598.
基金信息:
辽宁省自然科学基金资助项目(201602112)