2 | 0 | 13 |
下载次数 | 被引频次 | 阅读次数 |
为研究探空仪在穿越不同风速带过程中所产生的滞后误差问题,提出基于四北斗测风探空仪的风速修正方法,并设计一种适用于0~16 km高度范围的风速修正算法,以提升探空仪的测量精度。采用计算流体动力学(computational fluid dynamics,CFD)方法,对3种不同类型的降落伞结构进行仿真分析,评估其在不同条件下的气动性能,进而选取性能最优的伞型结构。基于仿真所得的误差数据,利用支持向量机(support vector machine,SVM)算法拟合风速误差修正模型,并进一步引入随机森林回归(random forest regression,RFR)算法作为对比,对探空仪实测风速进行修正。为验证修正算法的准确性与实用性,开展了外场低空投放实验。实验结果表明,搭载方锥型降落伞的探空仪综合表现最优,经修正后的风速与参考风速之间的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为0.185 m/s和0.205 m/s,可见所提方法在提升北斗探空仪测风精度方面的有效性。
Abstract:In order to study the problem of lag errors generated in the process of passing through different wind speed zones of the radiosonde, a wind speed correction method based on the Four Beidou wind-measuring radiosonde was proposed. Additionally, a wind speed correction algorithm applicable to the altitude range of 0 to 16 km was designed to improve the measurement accuracy of the radiosonde. The computational fluid dynamics(CFD) method was used to conduct simulation analyses on three different types of parachute structures, evaluate their aerodynamic performances under various conditions, and then select the parachute structure with the optimal performance. Based on the error data obtained from the simulation, the support vector machine(SVM) algorithm was used to fit the wind speed error correction model, and the random forest regression(RFR) algorithm was further introduced for comparison to correct the wind speed measured by the radiosonde. To verify the accuracy and practicality of the correction algorithm, an outdoor low-altitude drop experiment was carried out. The experimental results show that the radiosonde equipped with a square pyramidal parachute demonstrates the best comprehensive performance, which exhibits a mean absolute error(MAE) and root mean square error(RMSE) between the corrected wind speed and the reference wind speed are 0. 185 m/s and 0. 205 m/s, respectively. It is concluded that the proposed method is effective in improving the wind measurement accuracy of the Beidou radiosonde.
[1]WANG H,ZHANG Y M,MAO J X.Sparse Gaussian process regression for multi-step ahead forecasting of wind gusts combining numerical weather predictions and on-site measurements[J].Journal of Wind Engineering and Industrial Aerodynamics,2022,220:104873.
[2]谢益军,黄菊梅,杨伟,等.洞庭湖滨湖小时风速及湖陆风变化特征[J].干旱气象,2025,43(1):54-63.XIE Y J,HUANG J M,YANG W,et al.Variation characteristics of hourly wind speed at lakeside and lakeland breeze in Dongting Lake[J].Journal of Arid Meteorology,2025,43(1):54-63.(in Chinese)
[3]尼玛楚多.GPS技术在大气探测中的运用[J].无线互联科技,2021,18(4):92-93.Nimachuduo.Application of GPS technology in atmospheric exploration[J].Wireless Internet Technology,2021,18(4):92-93.(in Chinese)
[4]翟薇,钱传海,吴昊,等.台风飞机观测工程设计思考[J].中国工程科学,2025,27(2):86-94.ZHAI W,QIAN C H,WU H,et al.Engineering design for aircraft-based observations of typhoons[J].Strategic Study of CAE,2025,27(2):86-94.(in Chinese)
[5]陈文相,莫永强,吴伟.利用珠海CORS监测大气可降水量[J].北京测绘,2022,36(4):447-451.CHEN W X,MO Y Q,WU W.Monitoring atmospheric precipitable water using Zhuhai CORS[J].Beijing Surveying and Mapping,2022,36(4):447-451.(in Chinese)
[6]王雅萍,涂满红,缪明榕,等.北斗卫星导航系统在气象行业的应用[J].卫星应用,2023(10):42-48.WANG Y P,TU M H,MIAO M R,et al.Application of Beidou satellite navigation system in meteorological industry[J].Satellite Application,2023(10):42-48.(in Chinese)
[7]赵世军,高太长,马英,等.利用北斗导航系统探测高空风的研究[J].测绘科学,2013,38(5):13-15,45.ZHAO S J,GAO T C,MA Y,et al.Research on upper wind measurement with BD navigation system[J].Science of Surveying and Mapping,2013,38(5):13-15,45.(in Chinese)
[8]沈晔,陶莉.北斗探测系统与L波段雷达高空风对比分析[J].气象水文海洋仪器,2024,41(2):58-62.SHEN Y,TAO L.Comparative analysis of high altitude wind between Beidou detection system and L-band radar[J].Meteorological,Hydrological and Marine Instruments,2024,41(2):58-62.(in Chinese)
[9]彭文武.机载吊舱式下投探空技术研究[D].南京:南京信息工程大学,2020:1-116.PENG W W.Research on airborne pod dropping sounding technology[D].Nanjing:Nanjing University of Information Science&Technology,2020:1-116.(in Chinese)
[10]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.PAN D F,LIU H,LI Y F.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7):82-86.(in Chinese)
[11]郭启云,杨加春,杨荣康,等.球载式下投国产北斗探空仪测风性能评估[J].南京信息工程大学学报(自然科学版),2018,10(5):629-640.GUO Q Y,YANG J C,YANG R K,et al.Evaluation of wind performance of domestic Beidou dropsonde of ball-loading[J].Journal of Nanjing University of Information Science and Technology (Natural Science Edition),2018,10(5):629-640.(in Chinese)
[12]ZHANG T,BARAKOS G N.Assessment of implicit adaptive mesh-free CFD modelling[J].International Journal for Numerical Methods in Fluids,2024,96(5):670-700.
[13]KO H C,CHUN H Y,GELLER M A,et al.Global distributions of atmospheric turbulence estimated using operational high vertical-resolution radiosonde data[J].Bulletin of the American Meteorological Society,105(12):E2551-E2566.
[14]ZHANG H T,GAO M X.The application of support vector machine (SVM) regression method in tunnel fires[J].Procedia Engineering,2018,211:1004-1011.
[15]KOKATE S,CHETTYI M S R.Fraudulent event detection in credit card data operations using SVM-RBF kernel function machine learning classification technique[J].Intelligent Decision Technologies,2025,19(2):660-669.
[16]KUMAR YADAV A,PATERIYA R K,KUMARGUPTA N,et al.Hybrid machine learning model for face recognition using SVM[J].Computers,Materials&Continua,2022,72(2):2697-2712.
[17]刘洋,张鸿,徐娟,等.改进PSO的SVM回归模型及在气温预测中的应用[J].计算机系统应用,2023,32(9):203-210.LIU Y,ZHANG H,XU J,et al.Improved PSO-SVM regression model and its application in temperature forecasting[J].Computer Systems&Applications,2023,32(9):203-210.(in Chinese)
[18]肖磊.基于随机森林算法的语音特征智能辨识[J].电脑与电信,2019(10):51-53.XIAO L.The intelligent recognition of speech feature based on the random forest algorithm[J].Computer&Telecommunication,2019(10):51-53.(in Chinese)
基本信息:
DOI:
中图分类号:P414.7
引用信息:
[1]洪鑫,刘清惓,曹希龙等.高空机载下投式测风探空仪误差修订方法研究[J].中国科技论文,2025,20(08):633-643.
基金信息:
国家自然科学基金资助项目(42275143)